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LINEAIRES MULTIVARIABLES NON INVARIANTS Abstract

QUI SONT INSTABLES EN BOUCLE OUVERTE This paper considers a class of multivariable, nonlinear time-varying

feedback systems with an unstable convolution subsystem as feedforward

F.M. CALLIER - Ch. A. DESOER
and a time-varying nonlinear gain as feedback. The impulse response of the

convolution subsystem is the sum of i) a finite number of increasing expo-

nentials multiplied by nonnegative powers of the time t, ii) a term that

RESUME :
is absolutely integrable and iii) a infinite series of delayed impulses.

Cette communication envisage une classe de systkmes multi- The main result of the paper is theorem 1. It essentially states that i)

variables non lindaires, variables avec le temps, avec comme boucle de
sif the unstable convolution subsystem can be stabilized by a constant

prediction un sous systeme de convolution instable, et comme bouble de
feedback gain F and ii) if the incremental gain of the difference between

retour un gain non lindaire variable avec le temps. La rdponse impulsion-

nelle du sous syst!me de convolution est la somme de : the nonlinear gain function and F is sufficiently small, then the nonlinear

i) un nombre fini d'exponentielles'croissantes multiplides par des system is LP-stable for any p E [1,I]; furthermore the solutions of tha

puissances non ndgatives du temps, nonlinear system depend continuously on the inputs in any L -nqrm. The

ii) un terme absolument int~grale
fixed point theorem is crucial in deriving the above theorem.

iii) une srie infinie d'impulsions retarddes. /

Le rdsultat essentiel de cette communication est le thdortme ' ,

Ce thdoreme montre essentiellement que si : .

i) lesous systeme de convolution instable peut etre stabilis4 par u-

gain de retour constant F ~AS A-CR -1370 9 7 ) Lp-STABILIY (1 LESS 074-18229

ii) le gain incremental de la diffdrence entre la fonction de gain non THAN CR EQUAl TO p LESS THAN 03 EQUA

lindaire et F est suffisamment faible, c TO INFINITY) OF LULTIVARIABLE NONLIINEAR

alors le systeme non lindaire est L-stable, pour tout p e [1, oo ; de TIBE-VARYING FEEDBACK SYSTENS TH AT ARE Unclas

plus les solutions du systeme non lindaire d6pendent continuement des (California Univ.) 7 p HC $4.00 G3/19 93012

entrees pour toute norme L p . Le thdor!me du point fixe est fondamental

pour dlaborer le thdoreme 1. / Research sponsored by the National Aeronautics and Space Administration,
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1. Introduction. In .the past few years the L 2-stability [1], [2] the
and, for p = ,

L - stability [3], [4] of certain classes of nonlinear and time-varying ess sup (t

lxB ess sup jx(t)1.
feedback systems have been extensively studied. Desoer and Wu [5], [6] t 0

obtained LP-stability conditions for a broad class of linear time-invariant
The resulting normed spaces are denoted by L , 1 p -. " (If n = 1 (scalar

feedback systems whose open-loop impulse responses may include an integra-
case) we write L.) When the symbols 1I1 and 1.1 are applied to a matrix

tion and an infinite series of delayed impulses. They also obtained L-
or a matrix-valued function or an operator acting on function spaces, they

stability conditions for a related class of nonlinear time-varying systems
denote the induced operator norms. Note that in defining the Lnorms

in [7]. Recently Callier and Desoer [8], [9], [10] derived necessary and any vector norm in
above we may use any vector norm in R

n 
because all norms in Rn are equiv-

sufficient conditions for stability of a very broad class of linear time-
alent. Following Sandberg [11] and Zames [2], the space Lne, the extension

invariant feedback systems whose open-loop impulse responses may include
of L space, is defined as follows:

increasing exponentials multiplied by nonnegative powers of time and an
T

infinite series of delayed impulses. These conditions imply LP-stability L {(.)I Jx(t)P dt < -, VT E [0,), p< =
ne f

for any p E [1,-], [6]. In this paper the loop transformation technique

[12], the fixed point theorem [16], and a generalized version of some re-
and

sults of Callier, Desoer and Wu [10], [7] are used to derive the LP-stability
Lme {x(.)Iess sup Ix(t)I < -, VT E [o0,)).

for a related class of nonlinear time-varying feedback systems which are t E [0,T]

open-loop unstable. The application of the fixed point theorem in L
p 
shows

Roughly speaking, if x E Lne , then x does not have a finite escape time.

that the nonlinear feedback system has one and only one solution for any
In order to allow us to consider a larger class of linear subsystems whose

pair of inputs in L
p , 

that the solutions are continuously dependent on the
impulse responses may include an infinite series of impulses, we intro-

inputs and that closed loop system is L-stable for any p E [1,]. nxn
duce the Banach Algebra 

n n (see [6]). Let A be a distribution whose

2. Notations. In this paper we shall encounter real numbers (elements of nxn
support is in [0,"). We say that A is an element of nn if

), vectors (in ?n), matrices (in nxn), elements in function spaces and

operators acting on elements of function spaces. Lower-case letters denote A(t) = Aa(t) + Ai 6(t-ti)

numbers or vectors, upper-case letters denote matrices. Bold-face letters i-0

(indicated by a tilde under the symbol) denote operators. The symbol . nxn 1
where A : [0,.) + Rnn is in L , the sequence {t.} is in [0,") with

denotes both the magnitude of a number and the norm of a vector in 1 n or a a nxn

to0 0, ti > 0 for i > 1 and (Ai}7=0 is a sequence of matrices in nxn

matrix in nxn
. 

In function spaces, we use the following norms: Let

: * Rn, then by definition subject to . Ai < - and 6 is the Dirac "function." The set of elements

S dt] </ in anxn constitute a non-commutative Banach algebra with a unit, with the
Ixi Ix(t) 

P  
dt I 1 p < **

0 -usual definition for addition, the product defined by convolution, and the
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norm defined by second argument.

IAla f Aa(t) dt + A. (N.2) There exists a nonsingular matrix F 6 nxn and a positive real num'oer

0 i0 IA such that

jt(x,t) - (x',t) - F(x-x') _ Ix-x'I (2)

These facts are well-known [6,15].
for all t E. and all x, x' E qn; moreover

The symbol "'" over a function, such as f, denotes the Laplace transform

of f: it is defined by 0(0,t) - 0 for all t E +. (3)

(s) f(t) E-stdt. The block labeled G is a linear' time-invariant subsystem whose input-output

relation is defined in terms of its impulse response matrix G by convolu-

For distributions, it is defined according to L. Schwartz [13] or, by using tion, i.e.

Stieltes integrals, according to Widder [14]. The subscript T, as in fT' yl(t) - (G*el)(t) for all t E R+ (4)

denotes the truncation of the function f at time T, namely

G is a matrix valued distribution on [0,
=
) whose Laplace transform C satisfieb

f(t) for 0 < t < T

fT(t) f the assumption (G):

0 for t > T

. 'k-1 -mk+a
Finally a~n denotes the algebra of Laplace transforms of elements in .(s) - R (s-Pk) + Gp(s) for Re a > 0, (5)

nxn (with pointwise product). k-1 a=0

3. System Description and Assumptions. where Re pk 1 0 for k = 1, 2, ... , £; the poles pk and the coefficient

We consider a 2n-input 2n-output nonlinear time-varying feedback system matrices ak are either real or occur in complex conjugate pairs;

S as shown in Fig. 1. The inputs ul, u 2 , errors el, e2 , outputs yl, y2  G (s) E nxn. The system equations are (1), (4) and

are functions of time mapping R+ into Rn. The block labeled * is a

memoryless, time-varying nonlinearity whose input-output relation is de- el  u 1 - Y2  (6)

fined in terms of a nonlinear function *: Rn x R+ R'n by

y 2 (t) - *[e2 (t),t]. 
(1)

Definition: Let p E [1,-]; the system S (Fig. 1) defined by (1) - (7) is

The nonlinear function (,'*) satisfies the following assumptions: said to be LP-stable iff the maps (ul,u2) a (el,e 2 ) and (ul,u2 ) ) (yl,y2 )

(N.1) (',.): jn x + -IR n and 0 is a continuous function with respect are LP-stable i.e. to any input pair (ul,U2) belonging to Ln corresponds

to its first argument and is a regulated function with respect to its an error pair (ele 2 ) and an output pair (yl,2) both belonging to LPn and

(t) $(x,t): Ln x R + n is called regulated in t iff for all fixed there is a number k E6 + such that

x E Rn, t .* (x,t) has finite one-sided limits at every t E F+.
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le I + le I k [u Ip + lu2 - - and
Ip 2p- p 2 p

I F a < i (13)

lyll + ly2 p < k u[lll + lu2 p]

then,

for all (u1,u2) E LP'U 2n (i) for any p E [1,-], the maps (ul,u 2)$v (el,e2 ) and

4. Main Result. (U"lU2- (y1Y2 ) are well-defined maps sending L n  into LPn;

Theorem 1. Consider the system S described by (1), (4), (6) and (7), where (ii) for any p [1,], these maps are uniformly continuous on Ln;

the assumptions (G), (N.1) and (N.2) are satisfied. Let HF be the closed- (iii) for any pE [1,"], the system S is L-stable.

loop impulse response of the n-input n-output convolution feedback system 
5. Proof. To prove Theorem I,we need two lemmas.

Lemma 1. Consider a special case of the system S (Fig. i), where for all

ul 1 with G as open-loop impulse response and F as constant feedback

matrix, i.e. e2 R n, all t E R+, ¢(e2 ,t) = Fe2 , with F a nonsingular element

of nxn. Let the open-loop transfer function matrix 8 be defined by

(= 8[I+Fi]- I  (8) (5). Let Nk and Dk be the right-coprime polynomial matrices defined by

(10). Under these conditions
In (5) for k = 1, 2, ... , a set

kis) j-p . (9) R k[+ Fdl-

a-0
and

At each pole pk for k = 1, 2, ..., Z consider the Laurent expansion of H P G[I+FG]-I E onxn

I + Fe(s) up to and including the constant term. This proper rational
if and only if

function can be represented as the product Nk(s) Dk(s)-1 where Nk and Dk

are right-coprime polynomial matrices [18-21], i.e. for k = 1, 2, ... , Renf s de[I+F( 0)] > 0 (11)

Nk(s) Dk(s)- 1 = I + FR(s) + R (p k) + Gp(pk)]. (10) and

B=1 det Nk(Pk) 0 for k - i, 2, ... , Z. (12)

Under these conditions, if This is a generalized version of a result of [10].

Lemma 2. Consider a more general system than the one shown in Fig. 1, in

inf Idet[I + FG(s)] > 0 (11)
Re a > 0 that G and 4 are replaced by H1 and l{2 respectivelv. Let p be fixed and

det Nk(P) f 0 fork i, 2, ... , 2 (12) p E [1,]. Let Hi and H2 be nonanticipative maps of L
p  into

LP . Let Hi be linear, thus H10 = 0. Let H20 = 0. Let el, e2 and ul, u2ne 1 1 2  t 2 a ld '2

be defined by the system equations. Under these conditions if
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(a) for some F E nxn, F nonsingular, (I+H 1)- maps LP  into LP  and is and the block in the feedback path becomes

nonanticipative;

(b) there exists some positive real number p such that - F. (15)

I(,i2e2 T 2e') - F(e2-e Tp < lT - el Let HF(s) be the transfer function matrix of H, then
1(#2e2)T - ( - 2- p 2T 2Tp

for all T E [0,-) and for all e2' e2 E L e  s(8) - G(s)(I+F(s))-1 . (16)

1 -1
(c) 1H (I+FR1 )- I < ; By assumptions (11) and (12) of Theorem 1, Lemma 1 implies that (I+FG(s))

and RF(s) are in anxn; since they are the transfer functions of the

(d) y I 1 (+F.)-Ip < 1, operators (I+FG)-1 and H1 , these operators are nonanticipative, send L
P

into LP for any p E [1,.), and are L-stable for all p E [1,0], [6]. Thus
then: (i) given any input pair (ul,u2) in a unique error e in Lp nxn

2 ne the impulse response matrix HF is in and is of the form
is obtained by a fixed point iteration starting from an arbitrary point;

(ii) if ul and u2 are the zero elements in I ethen e2 is the zero element a(t) + Hi(t-ti) for t 0

inI ;H 1-
ne p 0F for t < 0,

(iii) to any two input pairs, say (ul,u2), (u',u') in Lne, there corres-2 2 2ne,

pond two errors e2 and e2 in Le such thad where H Lxn,the H Ri's are constant matrices such that H! < and

i=n

le2 ' e < (1-y)- 1 Fl(1+FU)l(u 2 -u )I + tO  0, ti > 0 for i _ 1. Also HF has a well-defined norm in (nxn

I e2T- eT'TP< (1-7)-11-I(]+1I-I( U2T-U'T) I p+

IHIulT-U) p  VT E [0,). 
IHFla a (t) Idt + 

i 
1.

-

0 i=0

Therefore the map (ul,u 2) P- e2 is a well-defined LP-stable map sending Note that IHF Ia is the induced operator norm when p = o and is an upper

n into Lp which is uniformly continuous on L'n.  bound on the induced operator norm when p # *. By assumption (N.2) we have

This Lemma is a consequence of the loop transformation technique [12] and

the fixed point Theorem [16]. I(e 2 )T - (e2)T - F(e 2 -e2)TI < 
~l e2T- e lp

Proof of Theorem 1. Let F be the nonsingular nxn constant matrix of as- P
for all T 6 [0,=), for all e 2, e' ELe2 ne

sumption (N.2). Make the system transformation such that the block in the

forward path becomes Finally by assumption (13): 1HF I a < 1; furthermore G is linear so

G 0 - 0 and, by assumption (N.2), 0 0 = 0. So all the conditions of

S - G(I+FG)- 1  (14)
Lemma 2 are met for any p E [l,-]with H - r and U2 =  . Hence, for any
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